An 8-Nodes 3D Hexahedral Finite Element and an 1D 2-Nodes Structural Element for Timoshenko Beams, Both Based on Hermitian Intepolation, in Linear Range

نویسندگان

چکیده

The following article presents the elaboration and results obtained from a 3D finite element, of 8-node hexahedron type with 6 degrees freedom (DOF) per node (48 DOF element) based on third degree Hermitian polynomials, 2-node structural (12 element), polynomials theory Timoshenko for beams. This has two purposes; first one is formulation element capable capturing bending effects, second to verify whether it possible obtain deformation beam’s cross section member beam type, deformations its axis. showed that FE was able reproduce satisfactory by simulating some cases beams different contour load conditions, obtaining errors between 1% 4% compared ANSYS software, educational version. Regarding reproduced were not as precise Hexa 8, presenting 6% 7% regard axis but error rounding 10% 20%.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Finite Element Formulation Based on Deformation Approach for Bending of Functionally Graded Beams

Finite element formulations based generally on classical beam theories such as Euler-Bernoulli or Timoshenko. Sometimes, these two formulations could be problematic expressed in terms of restrictions of Euler-Bernoulli beam theory, in case of thicker beams due to non-consideration of transverse shear; phenomenon that is known as shear locking characterized the Timoshenko beam theory, in case of...

متن کامل

A New Eight Nodes Brick Finite Element Based on the Strain Approach

In this paper, a new three dimensional brick finite element based on the strain approach is presented with the purpose of identifying the most effective to analyze linear thick and thin plate bending problems. The developed element which has the three essential external degrees of freedom (U, V and W) at each of the eight corner nodes, is used with a modified elasticity matrix in order to satis...

متن کامل

Adaptive Quadrilateral and Hexahedral Finite Element Methods with Hanging Nodes and Convergence Analysis

In this paper we study the convergence of adaptive finite element methods for the general non-affine equivalent quadrilateral and hexahedral elements on 1-irregular meshes with hanging nodes. Based on several basic ingredients, such as quasi-orthogonality, estimator reduction and Döfler marking strategy, convergence of the adaptive finite element methods for the general second-order elliptic pa...

متن کامل

A New Finite Element Formulation for Buckling and Free Vibration Analysis of Timoshenko Beams on Variable Elastic Foundation

In this study, the buckling and free vibration of Timoshenko beams resting on variable elastic foundation analyzed by means of a new finite element formulation. The Winkler model has been applied for elastic foundation. A two-node element with four degrees of freedom is suggested for finite element formulation. Displacement and rotational fields are approximated by cubic and quadratic polynomia...

متن کامل

An Enhanced Finite Element method for Two Dimensional Linear Viscoelasticity using Complex Fourier Elements

In this paper, the finite element analysis of two-dimensional linear viscoelastic problems is performed using quadrilateral complex Fourier elements and, the results are compared with those obtained by quadrilateral classic Lagrange elements. Complex Fourier shape functions contain a shape parameter which is a constant unknown parameter adopted to enhance approximation’s accuracy. Since the iso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2022

ISSN: ['2227-7390']

DOI: https://doi.org/10.3390/math10050836